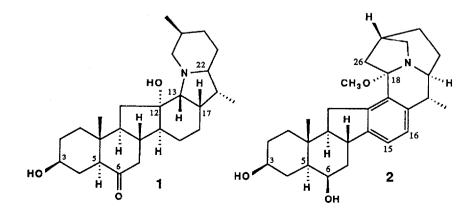
Pingbeinone, A Novel Steroidal Alkaloid having C-18 nor Cevane Skeleton from Fritillaria ussuriensis Maxim.

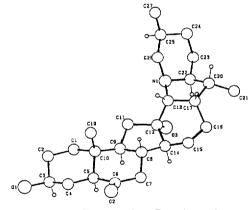

Yukie Kitamura, Makoto Nishizawa, and Koh Kaneko* Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060, Japan Motoo Shiro Shionogi Research Laboratory, Shionogi & Co., Fukushima Ku, Osaka 553, Japan Yuh-Pan Chen and Hong-Yen Hsu Oriental Healing Arts Institute, 1945 Palo Verde Avenue, Suite 208, Long Beach, California 90815, U.S.A.

Abstract: A novel stroidal alkaloid, having C-18 nor cevane skeleton, pingbeinone (1), was isolated from *Fritillaria ussuriensis* Maxim. The structure was established by X-ray crystallographic analysis of its hydrogen iodide.

An important Chinese medicine "Bei-mu", dried bulbs of *Fritillaria* genus, has been used for an antitussive, expectorant and sedative.¹) As many *Fritillaria* genus are cultivated in China, we have been studying the alkaloids in many kinds of "Bei-mu" to clarify the relation between the chemical constituents and the original plants.²) In the previous communication,³) we have reported a new steroidal alkaloid with 7-ring system, ussurienine (2), isolated from *Fritillaria ussuriensis*. In this communication, we report additional new stroidal alkaloid, pingbeinone (1), having a novel skeleton, isolated from *F. ussuriensis*.

The alkaloid containing fraction obtained from the 50% aqueous acetone extract of the dried bulbs of *F. ussuriensis*⁴) was repeatedly chromatographied on silica gel to give a new alkaloid (1), along with known alkaloids, ussuriedine,⁴) ussuriedinone,⁴) solanidine and verticine.

Pingbeinone (1) was obtained as white needles from MeOH; mp 200-202°C; HR-MS $C_{26}H_{41}NO_3$ (found 415.3076, calcd. 415.3086); [α]_D -22° (*c* 0.8, CHCl₃); EI-MS (*m/z*) 415 (M⁺), 400, 220, 164(base peak); IR v_{max} (CHCl₃) 3500(OH), 2810, 1730(carbonyl). The HR-MS and ¹³C-NMR spectra showed that 1 has 26 carbons in the molecule which is one carbon



Carbon No.	δ _C	δ _H	Carbon No.	δ _C	δ _H
1	37.2	1.42 (t, J=9.3Hz), 1.60	14	52.3	1.71
2	30.4	1.60, 1.65	15	26.9	0.80 (ddd, J=2, 10, 24Hz), 1.82
3	70.8	3.60 (W _{1/2} =23Hz)	16	21.4	1.20 (ddd, J=2, 12.9, 24.1Hz), 1.43
4	30.0	1.45, 1.92	17	42.0	2.40
5	56.4	2.25 (dd, J=2.5, 12.7Hz)	19	12.6	0.70 (s)
6	211.2		20	36.1	2.06 (tq, J=8.5, 9.8Hz)
7	46.4	2.19 (t, J=13.0Hz),	21	13.5	0.86 (d, <i>J</i> =7.0Hz)
		2.51 (dd, $J = 4.7$, 13.0Hz)	22	63.5	2.67 (dt, J=5.0, 8.5Hz)
8	47.9	1.45	23	23.8	1.63, 1.69
9	52.5	1.96	24	28.4	1.13, 1.56
9 10	38.3	1.50	25	30.6	1.67
			26	58.4	2.40 (dd, J = 9.1, 11.5Hz),
11	44.5	1.34 (t, <i>J</i> =12.3Hz), 1.9			2.79 (dd, J=2.9, 11.5Hz)
12	77.5		27	20.0	0.92 (d, J = 6.8Hz)
13	73.1	2.89 (d, <i>J</i> =9.8Hz)		20.0	(0.92 (0, 0 =0.0F12)

Table ¹H and ¹³C-NMR Chemical Shifts of 1 (CDCl₃)

lesser than those of normal 5 α -cevane alkaloids. The absolute structure of 1 was established by X-ray crystallographic analysis of its hydrogen iodide⁵) as shown in Figure. All signals of the ¹H- and ¹³C-NMR spectra were assigned as shown in Table using ¹H-¹H and ¹H-¹³C 2D NMR technique.

Compound 1 is the first example of the C26 alkaloid from Fritillaria species, and has a novel skeleton lacking C-18 of 5α-cevane skeleton. Moreover, it is notable that Fritillaria ussuriensis contains novel alkaloids which have the skeletons derived from the modification at C-18 of 5α-cevane skeleton. Compound 1 was also isolated glycoside fraction, after from the hydrolysis with B-glucosidase. The biogenesis and pharmacological activitiy of 1 are now under investigation.

Perspective Drawing of 1 Figure hydrogen iodide

REFERENCES and NOTES

- 1) Shen-nung-pen-tsao-ching (Shen-nung's Herbal); Chung-yao-chih (Chinese Herbal Drugs)
- (1979).
 2) K. Kaneko, T. katsuhara, H. Mitsuhashi, Y.-P. Chen, H.-Y. Hsu, and M. Shiro, *Chem. Pharm. Bull.*, **33**, 2614 (1985); *idem.,Tetrahedron Lett.*, **27**, 2387 (1986); P. Lee, Y. Kitamura, K. Kaneko, M. Shiro, G.-J. Xu, Y.-P. Chen and H.-Y. Hsu, *Chem. Pharm. Bull.*, **36**, 4316 (1988); K. Kaneko, T. Katsuhara, Y. Kitamura, M. Nishizawa, Y.-P. Chen and H.-Y. Hsu, *ibid.*, **36**, 4700 (1988); Y. Kitamura, K. Kaneko, M. Shiro, G.-J. Xu, Y.-P. Chen and H.-Y. Chen and H.-Y. Hsu, *ibid.*, **37**, (1989)
- a) Y. Kitamura, M. Nishizawa, K. Kaneko, M. Ikura, K. Hikichi, M. Shiro, Y.-P. Chen and H.-Y. Hsu, *Tetrahedron Lett.*, 29, 1959 (1988).
 4) Y. Kitamura, M. Nishizawa, K. Kaneko, M. Ikura, K. Hikishi, M. Shiro, Y.-P. Chen and H.-Y. Hsu, *Tetrahedron Lett.*, 29, 1959 (1988).
- Tetrahedron, accepted.
- 5) The crystal of 1 hydrogen iodide belongs to the orthorhombic system with space group $p_{21}2_{121}$, and the cell dimentions a=15.064(6), b=17.546(4), c=11.178(3) Å³, V=2954(1)Å³, R=0.074 for 1769 reflections. Table of structural data are available from the Cambridge Crystallographic Data Center, University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW, U.K.

(Received in Japan 5 July 1989)